Affiliation:
1. School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran
Abstract
In this article, a new wavelet-based laser peak detection algorithm is proposed having subpixel accuracy. The algorithm provides an accurate and rapid measurement platform for the rail surface corrugation with no need to any image noise elimination. The proposed rail Corrugation Measurement System (CMS) is based on the laser triangulation principle, and the accuracy of such system is mainly affected by the laser peak detection in the captured image. The intensity of each row or column of the image is taken as a 1-D discrete signal. Intensity distribution of a laser stripe in this signal follows a Gaussian pattern contaminated by the white noise. Against usual peak detection algorithms with need to prenoise-filtering process, the proposed method based on the wavelet transform is able to perform these tasks efficiently and robustly. Present wavelet-based methods for the peak detection are at pixel level, but for achieving high accuracy subpixel detection is proposed. Experiments show that the capability of the proposed method for laser peak detection is more accurate and faster than the filter-based methods, especially for low S/N ratios. Also, this technique can be utilized for any application in laser peak detection with subpixel accuracy. A prototype system based on the proposed method for the rail corrugation measurement has been designed and manufactured. Results of the rail corrugation measurement guarantee capability of the proposed methodology for accurate measurement of the rail corrugation and its potential for industrial application.
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献