Kinetic Analysis of the Thermal Decomposition of Latex Foam according to Thermogravimetric Analysis

Author:

Fan Hongwei12,Chen Yongliang23ORCID,Huang Dongmei23ORCID,Wang Guoqin12ORCID

Affiliation:

1. Zhejiang Furniture and Hardware Research Institute, Hangzhou, Zhejiang 310018, China

2. Key Laboratory of Furniture Inspection Technology of Zhejiang Province, Hangzhou, Zhejiang 310018, China

3. College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China

Abstract

The thermal decomposition of latex foam was investigated under nonisothermal conditions. Pieces of commercial mattress samples were subjected to thermogravimetric analysis (TG) over a heating range from 5°C min−1 to 20°C min−1. The morphology of the latex foam before and after combustion was observed by scanning electron microscopy (SEM), and the primary chemical composition was investigated via infrared spectroscopy (FT-IR). The kinetic mechanism and relevant parameters were calculated. Results indicate that the decomposition of latex foam in the three major degradation phases is controlled by third-order reaction (F3) and by Zhuravlev’s diffusion equation (D5). The mean E values of each phase as calculated according to a single heating rate nonisothermal method are equal to 41.91 ± 0.06 kJ mol−1, 86.32 ± 1.04 kJ mol−1, and 19.53 ± 0.11 kJ mol−1, respectively. Correspondingly, the preexponential factors of each phase are equal to 300.39 s−1, 2355.65 s−1, and 27.90 s−1, respectively. The mean activation energy E and preexponential factor A of latex foam estimated according to multiple heating rates and a nonisothermal method are 92.82 kJ mol−1 and 1.12 × 10−3 s−1, respectively.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3