Affiliation:
1. College of Information Science and Engineering, China University of Petroleum-Beijing, Beijing 102249, China
2. HSE Testing Center, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China
Abstract
Fluid Catalytic Cracking (FCC), a key unit for secondary processing of heavy oil, is one of the main pollutant emissions of NOx in refineries which can be harmful for the human health. Owing to its complex behaviour in reaction, product separation, and regeneration, it is difficult to accurately predict NOx emission during FCC process. In this paper, a novel deep learning architecture formed by integrating Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) for nitrogen oxide emission prediction is proposed and validated. CNN is used to extract features among multidimensional data. LSTM is employed to identify the relationships between different time steps. The data from the Distributed Control System (DCS) in one refinery was used to evaluate the performance of the proposed architecture. The results indicate the effectiveness of CNN-LSTM in handling multidimensional time series datasets with the RMSE of 23.7098, and the R2 of 0.8237. Compared with previous methods (CNN and LSTM), CNN-LSTM overcomes the limitation of high-quality feature dependence and handles large amounts of high-dimensional data with better efficiency and accuracy. The proposed CNN-LSTM scheme would be a beneficial contribution to the accurate and stable prediction of irregular trends for NOx emission from refining industry, providing more reliable information for NOx risk assessment and management.
Funder
CNPC Basic Research Fund Projects
Subject
General Engineering,General Mathematics
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献