Super Resolution Image Visual Quality Assessment Based on Feature Optimization

Author:

Lei Shu1ORCID,Zijian Huang1ORCID,Jiebin Yan1ORCID,Fengchang Fei2ORCID

Affiliation:

1. School of Information Technology, Jiangxi University of Finance and Economics, Nanchang 330032, China

2. College of Modern Economics and Management, Jiangxi University of Finance and Economic, Nanchang 330032, China

Abstract

Most existing no-referenced image quality assessment (NR-IQA) algorithms need to extract features first and then predict image quality. However, only a small number of features work in the model, and the rest will degrade the model performance. Consequently, an NR-IQA framework based on feature optimization is proposed to solve this problem and apply to the SR-IQA field. In this study, we designed a feature engineering method to solve this problem. Specifically, the features associate with the SR images were first collected and aggregated. Furthermore, several advanced feature selection algorithms were used to sort the feature sets according to their importance, and the importance matrix of features is obtained. Then, we examined the linear relationship between the number of features and Pearson linear correlation coefficient (PLCC) to determine the optimal number of features and the optimal feature selection algorithm, so as to obtain the optimal model. The results showed that the image quality scores predicted by the optimal model are in good agreement with the human subjective scores. Adopting the proposed feature optimization framework, we can effectively reduce the number of features in the model and obtain better performance. The experimental results indicated that SR image quality can be accurately predicted using only a small part of image features. In summary, we proposed a feature optimization framework to solve the current problem of irrelevant features in SR-IQA, and an SR image quality assessment model was proposed consequently.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3