A Propagation Loss Coefficient Model of Low-Frequency Elastic Wave in Coal Strata Set

Author:

Guo Yinjing1ORCID,Ju Yuanyuan1ORCID,Liu Zhen1ORCID,Zhang Jianhua1ORCID

Affiliation:

1. College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China

Abstract

Elastic waves cause energy loss during the transmission of coal measures. These losses include propagation loss, dielectric absorption loss, scattering loss, and frequency migration loss. The absorption loss is mainly caused by the inelastic absorption. The scattering loss is caused by the uneven heat absorption in the formation. The frequency shift loss is caused by the piezoelectric effect of coal-bearing formations and the intermodulation of different frequency signals. After considering the influence factors of the coal seam structure, this paper presents a model of low-frequency elastic waves loss coefficient. The paper proposed the loss coefficient of the elastic wave in the coal measure strata by considering two main attenuation mechanisms: intrinsic absorption and scattering. This paper theoretically studied the effects of the model parameters such as density, porosity, particle size, and wave frequency on the loss of wave energy using COMSOL simulation. Besides, the comparison of MATLAB simulation results shows that the simulation results produced by the model proposed in this paper are similar to the models embedded in COMSOL. This work can be applied to coal, oil, and gas exploration and is also helpful to study the mechanisms of wave attention on the low-frequency band.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Backstepping sliding mode control for an active hydraulically interconnected suspension;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2023-03-15

2. Individual and combined influences of main loading parameters on granite damage development under ultrasonic vibration;Journal of Mountain Science;2021-11-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3