Human Tissue Kallikrein 1 Improves Erectile Dysfunction of Streptozotocin-Induced Diabetic Rats by Inhibition of Excessive Oxidative Stress and Activation of the PI3K/AKT/eNOS Pathway

Author:

Luan Yang1ORCID,Cui Kai1,Tang Zhe1,Ruan Yajun1,Liu Kang1,Wang Tao1,Chen Zhong1ORCID,Wang Shaogang1ORCID,Liu Jihong1ORCID

Affiliation:

1. Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

Abstract

Objective. To investigate the protective effects and mechanisms of human tissue kallikrein 1 (hKLK1) on type 1 diabetes mellitus- (DM-) induced erectile dysfunction in rats. Materials and Methods. The homozygous transgenic rats (TGR) harboring the hKLK1 gene and age-matched wild-type Sprague Dawley rats (WTR) were involved, and intraperitoneal injection of streptozotocin was utilized to induce diabetes in rats. Forty-eight-week-old male rats were randomly divided into a WTR group, TGR group, diabetic WTR group (WTDM), diabetic TGR group (TGDM), and TGDM with HOE140 group (TGDMH), with eight rats in each group. Twelve weeks later, the erectile response of all rats was detected by cavernous nerve electric stimulation, and corpus cavernosums were harvested to evaluate the levels of cavernous oxidative stress (OS), apoptosis, fibrosis, and involved pathways. Moreover, cavernous smooth muscle cells (CSMC) and endothelial cells (EC) were primarily isolated to build a coculture system for a series of in vitro verification. Results. The hKLK1 gene only existed and was expressed in TGR. Compared to the WTR group, the WTDM group showed a lower erectile response, overactivated OS and apoptosis, inhibited PI3K/AKT/eNOS pathway, and aggravated cavernous fibrosis. However, hKLK1 in the TGDM group could improve these pathological changes induced by DM, while its protective effects could be weakened by HOE140 in the TGDMH group. In the coculture system, hKLK1 could induce CSMC relaxation through activating PI3K/eNOS/cGMP signaling and inhibiting calcium ion influx under physiological condition. It could also resist the increased reactive oxygen species, apoptosis level, and reduced cGMP level in CSMC under high-glucose condition. Conclusions. hKLK1 preserves erectile function of DM rats through its antitissue excessive OS, apoptosis, and fibrosis effects, as well as activation of the PI3K/AKT/eNOS/cGMP pathway in the penis. Moreover, hKLK1 promotes relaxation and prevents high glucose-induced injuries of CSMC mediated by EC-CSMC crosstalk.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3