Synthesis, Crystallization, and Dielectric Behaviour of Lead Bismuth Titanate Borosilicate Glasses with Addition of 1% La2O3

Author:

Gautam C. R.1,Madheshiya Abhishek1,Dwivedi R. K.2

Affiliation:

1. Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, India

2. Department of Physics and Materials Science, Jaypee Institute of Information and Technology, Noida 201307, India

Abstract

Lead bismuth titanate borosilicate glasses were prepared in the glass system 65[(PbxBi1-x)·TiO3]-34[2SiO2·B2O3]-1La2O3 (0.0x1.0) doped with one mole percent of La2O3 via conventional melt quench method. The amorphous nature of glass samples in this glass system is confirmed by using X-ray diffraction (XRD) study. Differential thermal analysis (DTA) has been employed to determine the glass transition temperature, Tg, as well as crystallization temperature, Tc. DTA measurements were recorded in temperature range from 30 to 1200°C. The prepared glasses were crystallized by regulated controlled heat treatment process on the basis of their DTA results. These samples are carried out for XRD measurements in the 2θ range from 20 to 80° to study the crystallization behaviour and phase formation of the glass ceramic samples. The scanning electron microscopy (SEM) of these glass ceramic samples has been carried out to explore the morphology through nucleation and growth of the crystallites in the glassy matrix. The values of dielectric constant as well as dielectric loss were increased with increasing the temperature within the frequency range from 20 Hz to 100 Hz. The addition of 1 mol% of La2O3 to the lead bismuth titanate glasses enhances the crystallization and acts as donor dopant for this glass system.

Funder

Uttar Pradesh Council of Science and Technology, Lucknow, India

Publisher

Hindawi Limited

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3