Affiliation:
1. School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
Abstract
Measured load data play a crucial role in the fatigue durability analysis of mechanical structures. However, in the process of signal acquisition, time domain load signals are easily contaminated by noise. In this paper, a signal denoising method based on variational mode decomposition (VMD), wavelet threshold denoising (WTD), and singular spectrum analysis (SSA) is proposed. Firstly, a simple criterion based on mutual information entropy (MIE) is designed to select the proper mode number for VMD. Detrended fluctuation analysis (DFA) is adopted to obtain the noise level of the noisy signal, which can optimize the selection of MIE threshold. Meanwhile, the noisy signal is adaptively decomposed into band-limited intrinsic mode functions (BLIMFs) by using VMD. In addition, weighted-permutation entropy (WPE) is applied to divide the BLIMFs into signal-dominant BLIMFs and noise-dominant BLIMFs. Then, the signal-dominant BLIMFs are reconstructed with the noise-dominant BLIMFs processed by WTD. Finally, SSA is implemented for the reconstructed signal. Experimental results of synthetic signals demonstrate that the presented method outperforms the conventional digital signal denoising methods and the related methods proposed recently. Effectiveness of the proposed method is verified through experiments of the measured load signals.
Funder
National Key Research and Development Plan of China
Subject
General Engineering,General Mathematics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献