An Improved VMD-Based Denoising Method for Time Domain Load Signal Combining Wavelet with Singular Spectrum Analysis

Author:

Fu Jingjing1,Cai Fuyou1,Guo Yonghao1,Liu Hongda1,Niu Wentie1ORCID

Affiliation:

1. School of Mechanical Engineering, Tianjin University, Tianjin 300350, China

Abstract

Measured load data play a crucial role in the fatigue durability analysis of mechanical structures. However, in the process of signal acquisition, time domain load signals are easily contaminated by noise. In this paper, a signal denoising method based on variational mode decomposition (VMD), wavelet threshold denoising (WTD), and singular spectrum analysis (SSA) is proposed. Firstly, a simple criterion based on mutual information entropy (MIE) is designed to select the proper mode number for VMD. Detrended fluctuation analysis (DFA) is adopted to obtain the noise level of the noisy signal, which can optimize the selection of MIE threshold. Meanwhile, the noisy signal is adaptively decomposed into band-limited intrinsic mode functions (BLIMFs) by using VMD. In addition, weighted-permutation entropy (WPE) is applied to divide the BLIMFs into signal-dominant BLIMFs and noise-dominant BLIMFs. Then, the signal-dominant BLIMFs are reconstructed with the noise-dominant BLIMFs processed by WTD. Finally, SSA is implemented for the reconstructed signal. Experimental results of synthetic signals demonstrate that the presented method outperforms the conventional digital signal denoising methods and the related methods proposed recently. Effectiveness of the proposed method is verified through experiments of the measured load signals.

Funder

National Key Research and Development Plan of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3