Redox States of Protein Cysteines in Pathways of Protein Turnover and Cytoskeleton Dynamics Are Changed with Aging and Reversed by Slc7a11 Restoration in Mouse Lung Fibroblasts

Author:

Zheng Yuxuan1ORCID,Merchant Michael L.12,Burke Tom J.3,Ritzenthaler Jeffrey D.4,Li Ming2,Gaweda Adam E.2,Benz Frederick W.1,Roman Jesse4,Watson Walter H.13ORCID

Affiliation:

1. Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA

2. Department of Medicine, Division of Nephrology and Hypertension, University of Louisville School of Medicine, Louisville, KY 40202, USA

3. Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, 40202 KY, USA

4. Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Sidney Kimmel Medical College and Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, 19107 PA, USA

Abstract

Slc7a11 is the key component of system Xc-, an antiporter that imports cystine (CySS) and exports glutamate. It plays an important role in cellular defense against oxidative stress because cysteine (Cys), reduced from CySS, is used for and limits the synthesis of glutathione (GSH). We have shown that downregulation of Slc7a11 is responsible for oxidation of extracellular Cys/CySS redox potential in lung fibroblasts from old mice. However, how age-related change of Slc7a11 expression affects the intracellular redox environment of mouse lung fibroblasts remains unexplored. The purpose of this study is to evaluate the effects of aging on the redox states of intracellular proteins and to examine whether Slc7a11 contributes to the age-dependent effects. Iodoacetyl Tandem Mass Tags were used to differentially label reduced and oxidized forms of Cys residues in primary lung fibroblasts from young and old mice, as well as old fibroblasts transfected with Slc7a11. The ratio of oxidized/reduced forms (i.e., redox state) of a Cys residue was determined via multiplexed tandem mass spectrometry. Redox states of 151 proteins were different in old fibroblasts compared to young fibroblasts. Slc7a11 overexpression restored redox states of 104 (69%) of these proteins. Ingenuity Pathway Analysis (IPA) showed that age-dependent Slc7a11-responsive proteins were involved in pathways of protein translation initiation, ubiquitin-proteasome-mediated degradation, and integrin-cytoskeleton-associated signaling. Gene ontology analysis showed cell adhesion, protein translation, and organization of actin cytoskeleton were among the top enriched terms for biological process. Protein-protein interaction network demonstrated the interactions between components of the three enriched pathways predicted by IPA. Follow-up experiments confirmed that proteasome activity was lower in old cells than in young cells and that upregulation of Slc7a11 expression by sulforaphane restored this activity. This study finds that aging results in changes of redox states of proteins involved in protein turnover and cytoskeleton dynamics, and that upregulating Slc7a11 can partially restore the redox states of these proteins.

Funder

National Institute of General Medical Sciences

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3