Affiliation:
1. The School of Information, Communication and Computer Technologies, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12120, Thailand
2. The School of Knowledge Science, Japan Advanced Institute of Science and Technology, Nomi 923-1292, Japan
Abstract
Information extraction and knowledge discovery regarding adverse drug reaction (ADR) from large-scale clinical texts are very useful and needy processes. Two major difficulties of this task are the lack of domain experts for labeling examples and intractable processing of unstructured clinical texts. Even though most previous works have been conducted on these issues by applying semisupervised learning for the former and a word-based approach for the latter, they face with complexity in an acquisition of initial labeled data and ignorance of structured sequence of natural language. In this study, we propose automatic data labeling by distant supervision where knowledge bases are exploited to assign anentity-levelrelation label for each drug-event pair in texts, and then, we use patterns for characterizing ADR relation. The multiple-instance learning with expectation-maximization method is employed to estimate model parameters. The method applies transductive learning to iteratively reassign a probability of unknown drug-event pair at the training time. By investigating experiments with 50,998 discharge summaries, we evaluate our method by varying large number of parameters, that is, pattern types, pattern-weighting models, and initial and iterative weightings of relations for unlabeled data. Based on evaluations, our proposed method outperforms the word-based feature for NB-EM (iEM), MILR, and TSVM with F1 score of 11.3%, 9.3%, and 6.5% improvement, respectively.
Subject
Health Informatics,Biomedical Engineering,Surgery,Biotechnology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献