Natural Gas Migration Pathways and Their Influence on Gas Hydrate Enrichment in the Qiongdongnan Basin, South China Sea

Author:

Zuo Tingna12ORCID,Wang Ren12ORCID,He Yulin34ORCID,Shi Wanzhong12ORCID,Liang Jinqiang34ORCID,Xu Litao12ORCID,Du Hao12ORCID,Deng Yan12ORCID,Xu Xiaofeng12ORCID

Affiliation:

1. Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China

2. School of Earth Resources, China University of Geosciences, Wuhan 430074, China

3. Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China

4. Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 510075, China

Abstract

2D and 3D seismic data and basin simulation were used to investigate the gas hydrate distribution and natural gas migration pathways in the Qiongdongnan Basin (QDNB). Hydrate-related amplitude anomalies and extensive bottom simulating reflectors (BSRs) were mapped within the uppermost part. Based on their seismic reflection characteristics, the three main types of natural gas migration pathways and their distributions in the QDNB were identified through high-resolution seismic data. Basin modeling was carried out to document the migration efficiency of different migration pathways and their effects on hydrate enrichment. The basin modeling results show the following: (1) Diapirs, fault structures, and fractures constitute the three main types of natural gas migration pathways that transport the thermogenic gas from the deep to shallow layers in the QDNB. (2) The three migration pathways impact hydrate enrichment in different ways. Diapirs and faults contribute significantly to hydrate enrichment due to their higher migration efficiency. In comparison, the migration efficiency of the fracture systems is lower, with minimal benefit to hydrate enrichment. (3) The natural gas hydrate in the QDNB is mainly distributed along the diapirs and deep faults and generally scattered around the fracture system. These conclusions indicate that the migration pathways in the QDNB are regionally distributed and are closely related to hydrate accumulation.

Funder

China University of Geosciences

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3