Multi-Band mm-Wave Wearable Antenna Synthesized with a Genetic Algorithm

Author:

Dejen Arebu1ORCID,Ridwan Murad1,Jayasinghe Jeevani2ORCID,Anguera Jaume34ORCID

Affiliation:

1. School of Electrical and Computer Engineering, AAIT, Addis Ababa University, Addis Ababa, Ethiopia

2. Department of Electronics, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka

3. Telecommunication Engineering, University at Ramon Llull, Barcelona, Spain

4. Ignion, Barcelona, Spain

Abstract

This paper presents the design of a novel fabric-based multi-band microstrip antenna in mm-wave frequencies for wearable applications. The reference patch antenna was etched on a flexible polytetrafluoroethylene (PTFE) fabric substrate with an overall dimension of 18 mm × 18 mm × 0.6 mm and optimized the patch geometry using a binary-coded genetic algorithm. The algorithm iteratively creates a new shape of the path surface, evaluates the cost function, and returns the best-fitted geometry based on the formulated fitness function. The free space and on-body simulation of the best-fitted antenna performance parameter was investigated and analyzed. In free space, the proposed antenna is resonant at five distinct frequencies: 27.8 GHz, 30.3 GHz, 40.1 GHz, 47.2 GHz, and 56.7 GHz. The antenna achieves a wide bandwidth of 0.69, 2.32, 2.22, 1.76, and 8.11 GHz and an improved broadside directivity of 10.3, 8.5, 7.8, 9.6, and 8.9 dB in free space, respectively. For on-body analysis, the antenna was simulated using a three-layer human body phantom model at three distinct distances. The gain and radiation efficiency were significantly reduced when the antenna was close to the phantom model and gradually enhanced as the gap increased. Moreover, the antenna performances were evaluated and compared by using four additional fabric substrates. Because of its excellent on-body performance with flexible textile-based substrates, the optimized antenna is a suitable candidate for multi-band body-centric communications.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Analysis of Textile Substrates adopted in Wearable Antennas: A Review;2024 International Conference on Advancements in Power, Communication and Intelligent Systems (APCI);2024-06-21

2. Synthesis of Quadband mm-Wave Microstrip Antenna Using Genetic Algorithm for Wireless Application;Technologies;2023-01-16

3. Genetically Optimized Quad-Band mm-Wave Microstrip Patch Antenna;Lecture Notes in Electrical Engineering;2023

4. A Survey – Wearable Antenna Techniques and its Applications;December 2022;2022-12-15

5. A Survey – Wearable Antenna Techniques and its Applications;December 2022;2022-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3