Torsional Modeling of Reinforced Concrete Beam–Column Joint Retrofitted by Aramid Fiber—Experimental and Numerical Analysis

Author:

Prasath Palaniappan1,Gobinath Ravindran2ORCID,Sridhar Jayaprakash3ORCID

Affiliation:

1. Department of Civil Engineering, Muthayammal College of Engineering, Rasipuram, Tamil Nadu, India

2. Department of Civil Engineering, SR University, Warangal 506371, Telangana, India

3. Department of Civil Engineering, GMR Institute of Technology, Rajam, Andhra Pradesh 532127, India

Abstract

The performance of structural composites during loading has always been a concern for the designers and construction industry since the reinforced concrete structure was discovered. In this study, lateral load–displacement behavior of beam–column joints wrapped with aramid fiber is evaluated using both experimental and numerical analysis subjected to torsional moment (beam-eccentric loading). Three categories of reinforcement concepts are adopted for the preparation of the beam–column joints, where members are wrapped with aramid fiber at the joints, and others are not fortified with aramid fibers. Prior to testing, the structural composites are cured for maximum 28 days into water. The beam–column joints are subjected to lateral load at a point near the column end of the beam–column connection, and the corresponding deflections are measured until the member fails. Based on the test results, ductility and energy absorption capacity are evaluated. The findings of the numerical investigation of beam–column joint show there is not much variation in the experimental and numerical analysis; it is clearly found that aramid fiber wrapping provided large rigidity in the joint, and it is also prolonged the final failure of the joints. This study shows that in addition to the conventional reinforcement, providing the hanger reinforcement and the diagonal reinforcement improves the rigidity of the beam–column joints during severe loadings, as this study described.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3