High-Performance Control Simulation of PFC Converter for Electric Vehicle Charger

Author:

Zhu Bubo1ORCID,Sun Shaojie1ORCID,Jia Yongfeng1ORCID

Affiliation:

1. Shaanxi College of Communication Technology, School of Automotive Engineering, Xi’an 710018, Shaanxi, China

Abstract

In order to solve the problems of low power factor and large harmonic pollution of some electrical equipment connected to the power grid, such as electric vehicle charger system, the author proposes a high-performance control simulation study of a PFC converter for electric vehicle charger. Using the staggered parallel boost power factor correction circuit topology of electric vehicle chargers as the front stage, its high power factor and low harmonic current characteristics can reduce the pollution to the power grid, and the detailed design process and loss analysis of the circuit are given. Through the digital control method and hardware optimization design, the loss is reduced, and the conversion efficiency of the power factor correction converter in the full power range is high, which meets the efficiency requirements of the platinum version and achieves the goal of energy saving and environmental protection. The test results show that the actual efficiency of the experimental prototype is 97.43%, 97.55%, and 97.36%, which are far higher than the efficiency requirements of the platinum version. Conclusion. The high-performance control of the PFC converter of the electric vehicle charger has certain guiding significance for the application in the electric vehicle.

Funder

Education Department of Shaanxi Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Science Applications,Modeling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3