A Comparative Analysis of Methods of Endmember Selection for Use in Subpixel Classification: A Convex Hull Approach

Author:

Sivakumar Vidhya Lakshmi1,Ramkumar K.2ORCID,Vidhya K.3,Gobinathan B.4,Gietahun Yonas Wudineh5ORCID

Affiliation:

1. Department of Civil Engineering, Saveetha School of Engineering, SIMATS, Chennai, India

2. Department of Computer Science and Engineering, SRM Institute of Science and Technology, Vadapalani, Chennai, India

3. Department of Electronics and Communication Engineering, Saveetha School of Engineering, SIMATS, Chennai, India

4. Jaya Sakthi Engineering College, Thiruninravur, Chennai, India

5. Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia

Abstract

Mixed pixels in aerial and satellite images are common, especially near the boundaries of two or more discrete classes; that is, they tend to occur at the transitional region between two classes. Ideally, to decipher the mixed pixel, a soft classification is performed compared to a hard- or a per-pixel classification. Soft or subpixel classification is carried out where the fractional cover of the LULC contained within a pixel is derived. Endmembers are extracted for three VNIR bands of ASTER data for two image datasets using three approaches, namely, principal component analysis (PCA), pixel purity index (PPI), and convex hull-Graham scan (CHGS). On comparing the DN values of the identified endmembers, it is observed that the CHGS method provides the most appropriate end members than the PCA-derived and PPI-derived end members. This is based on deriving the endmembers from two different image conditions. Convex hull implemented using the Graham scan algorithm delineates the pure pixel and pinpoints the exact number of endmembers. These accurate end members would result in accurate proportions of the land cover for better modeling of the terrain.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3