MAP9 Exhibits Protumor Activities and Immune Escape toward Bladder Cancer by Mediating TGF-β1 Pathway

Author:

Zhang Chong1,Han Bing1,Guo Yuanyuan1,Guan Han1,Chen Zhijun1,Liu Beibei1,Sun Wenyan1,Li Wenyong1,Sun Wei1,Wang Sheng1ORCID

Affiliation:

1. Department of Urinary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China

Abstract

To investigate more potential targets for the treatment of human bladder cancer, quantitative reverse transcription polymerase chain reaction (qRT-PCR) and high-content screening (HCS) analysis were performed, and microtubule-associated protein 9 (MAP9), which had the strongest proliferation inhibition from 809 downregulated genes, has been selected. MAP9 is responsible for bipolar spindle assembly and is involved in the progression of many types of tumors; however, its role in bladder cancer (BC) remains unknown. Expressive levels of MAP9 in BC tissues were determined through immunohistochemistry, and the clinical significance of MAP9 in BC was analyzed. Short hairpin ribonucleic acid- (ShRNA-) MAP9 was used to construct stable MAP9 knockdown BC cell lines. The proliferative abilities of MAP9 were measured through assays in vivo and in vitro, and the migrated and invasive abilities of MAP9 were analyzed via in vitro experiments. Quantitative reverse transcription PCR, western blotting, coimmunoprecipitation (Co-IP), and rescue assays were used to identify downstream targets of MAP9. MAP9 expression increased in the tumor tissues, and its increased level was negatively correlated with prognosis. Further, the loss of MAP9 caused decreased BC cell proliferation via inducing the growth 1/synthesis (G1/S) cell cycle arrest in vitro and slowed tumor growth in vivo. In addition, MAP9 silencing attenuated BC cell migration and invasion. Moreover, we found that the growth 1/synthesis (G1/S) cell cycle-related genes and the epithelial mesenchymal transition (EMT) marker levels decreased after silencing MAP9. Finally, we found that the transforming growth factor beta 1 (TGF-β1) pathway is activated as a mediator for MAP9 to regulate genes related to the G1/S cell cycle and EMT. MAP9 promotes BC progression and immune escape activity through the TGF-β1 pathway and is a potential novel target for therapies of BC.

Funder

Natural Science Foundation of Anhui Province

Publisher

Hindawi Limited

Subject

Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3