Time-Varying Ocean-Like Surface Scattering at Grazing Incidence: Numerical Analysis of Doppler Spectrum at HF/VHF/UHF Bands

Author:

Hou Yidong1ORCID,Wen Biyang1ORCID,Wang Caijun1,Yang Yonghuai1

Affiliation:

1. Electronic Information School of Wuhan University, Wuhan 430072, China

Abstract

This paper numerically analyzes the characteristics of the Doppler spectrum at HF/VHF/UHF bands from 1D time-varying ocean-like surfaces at grazing incidence in vertical polarization mode. The rough surface is transformed into a local perturbation plane which has its roughness flattened at the edges. The scattering waves include coherent reflected wave and incoherent scattering waves. The surface currents exciting the incoherent scattering waves are regarded as the unknowns which can be solved from the improved surface integral equation using the method of moments (MoM). The incident plane wave allows the incident angle to reach up to 90° (grazing incidence). Then the backscattering wave in the far field can be calculated, and the Doppler spectrum is obtained by coherent Monte-Carlo simulation. Firstly, the validity of the method is verified by comparing with the mature small perturbation method at the HF band. Then the incident wave frequency is asymptotically increased from HF to UHF, and the application range of the SPM is quantitatively evaluated in the Doppler spectrum domain. Finally, the paper focuses on analyzing the characteristics of Doppler spectrum in different bands and different sea states and comparing the influence of nonlinear ocean waves on the Doppler spectrum at different frequencies.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulating the Profile of a Radio Altimeter Echo Signal;Journal of the Russian Universities. Radioelectronics;2022-09-29

2. Numerical and Experimental Study on Backscattering Doppler Characteristics From 2-D Nonlinear Sealike Surface at Low Grazing Angle;IEEE Transactions on Antennas and Propagation;2020-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3