Investigating Reliability of Duimenshan High Rock Slope in Gejiu, Yunnan Province Based on the Monte Carlo Method

Author:

Fa-You A.12ORCID,Pan Wan-cheng1,Wu Wen-ping34,Yan Shi-qun1

Affiliation:

1. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming Yunnan 650093, China

2. Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area, Ministry of Natural Resources of the People’s Republic of China, Kunming Yunnan 650000, China

3. China Ordnance Industry Survey and Geotechnical Institute Co., Ltd., China

4. Beijing China Ordnance Industry Geotechnical Engineering Co., Ltd., China

Abstract

A slope is a complex engineering geological body that contains many uncertainties. In the present study, the high rock slope of Duimenshan in Gejiu, China is taken as the research object, and the Monte Carlo method is used to perform the analyses. Firstly, based on a large number of rock mass discontinuities, the Fuzzy C-Means (FCM) clustering algorithm is used to determine the dominant discontinuities. Secondly, the affecting parameters of the rock mass such as cohesion, internal friction angle, horizontal seismic acceleration coefficient, and water-filled depth coefficient are taken as random variables, and the failure probability of the slope and the failure index corresponding to different slope heights and slopes are obtained as the output parameter. The obtained results show that the target reliability index of the slope in a certain range of the slope height is far from the safety value, indicating that the slope is unstable, and the combination of slope height and slope angle affects the reliability of the slope. More specifically, as the slope height and angle increase, the number of samples with a stability coefficient of less than 1 increases, thereby increasing the failure probability of the slope indicating that the slope is stable. It is found that unless the slope height is small, it is the main factor of stability. However, when the slope height exceeds 33 m, the effect of the slope inclination on the stability increases gradually.

Funder

Key Research and Development Program of Yunnan Province

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3