A Novel Approach to Optimizing Convolutional Neural Networks for Improved Digital Image Segmentation

Author:

Xing Kongduo1,Ku Junhua2ORCID,Zhao Jie2

Affiliation:

1. College of Information Engineering, Hainan Vocational University of Science and Technology, Haikou, Hainan 571126, China

2. School of Science, Qiongtai Normal University, Haikou, Hainan 571127, China

Abstract

To divide a digital image into individual parts that share similar characteristics is known as digital image segmentation, and it is a vital research subject in the field of computer vision. Object recognition, medical imaging, surveillance, and video processing are just a few of the many real-world contexts where this study could prove useful. While digital image segmentation research has come a long way, there are still certain obstacles to overcome. Segmentation algorithms frequently encounter challenges in achieving both accuracy and efficiency when confronted with intricate settings, noisy pictures, or fluctuating lighting conditions. The absence of established evaluation standards adds complexity to the process of performing equitable comparisons among different segmentation methodologies. Due to the subjective nature of photo segmentation, attaining consistent results among specialists can be challenging. The integration of machine learning and deep neural networks into segmentation algorithms has introduced new challenges, including the need for large amounts of annotated data and the interpretability of the outcomes. Given these challenges, the objective of this study is to enhance the segmentation model. To this end, this research suggests a model of convolutional neural networks that is optimal for digital picture segmentation. The model is based on a dense convolution neural network, and it incorporates a transfer learning technique to significantly boost the model’s robustness and the quality of picture segmentation. The model’s adaptability to new datasets is improved by the incorporation of a transfer learning method. As demonstrated by experimental results on two publicly available datasets, the suggested methodology considerably enhances the resilience of digital picture segmentation.

Funder

Natural Science Foundation of Hainan Province

Publisher

Hindawi Limited

Reference23 articles.

1. New advances in imaging techniques;J. Smith;European Journal of Radiology,2021

2. Recent advances in ultrasonography for breast cancer;S. Kim;European Radiology,2021

3. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

4. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

5. LPNet: license plate recognition via deep neural networks;Q. Zeng;IEEE Transactions on Intelligent Transportation Systems,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3