CO2 Adsorption from Biogas Using Amine-Functionalized MgO

Author:

Kasikamphaiboon Preecha1ORCID,Khunjan Uraiwan1

Affiliation:

1. Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani 94000, Thailand

Abstract

Biogas is a renewable fuel source of methane (CH4), and its utilization as a natural gas substitute or transport fuel has received much interest. However, apart from CH4, biogas also contains carbon dioxide (CO2) which is noncombustible, thus reducing the biogas heating value. Therefore, upgrading biogas by removing CO2 is needed for most biogas applications. In this study, an amine-functionalized adsorbent for CO2 capture from biogas was developed. Mesoporous MgO was synthesized and functionalized with different tetraethylenepentamine (TEPA) loadings by wet impregnation technique. The prepared adsorbents (MgO-TEPA) were characterized by X-ray diffraction (XRD) and N2 adsorption-desorption. The CO2 adsorption performance of the prepared MgO-TEPA was tested using simulated biogas as feed gas stream. The results show that the CO2 adsorption capacities of the adsorbents increase with increasing TEPA loading. The optimum TEPA loading is 40 wt.%, which gives the highest CO2 adsorption capacity of 4.98 mmol/g. A further increase in TEPA loading to 50 wt.% significantly reduces the CO2 adsorption capacity. Furthermore, the stability and regenerability of the adsorbent with 40% TEPA loading (MgO-TEPA-40) were studied by performing ten adsorption-desorption cycles under simulated biogas and real biogas conditions. After ten adsorption-desorption cycles, MgO-TEPA-40 shows slight decreases of only 5.42 and 5.75% of CO2 adsorption capacity for the simulated biogas and biogas, respectively. The results demonstrate that MgO-TEPA-40 possesses good stability and regenerability which are important for the potential application of this amine-based adsorbent.

Publisher

Hindawi Limited

Subject

General Chemical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3