Affiliation:
1. School of Business Economics, Shanghai Business School, Shanghai 201400, China
2. School of Economics, Harbin University of Commerce, Harbin 150000, Heilongjiang, China
Abstract
With the advent of the era of big data (BD), people’’s living standards and lifestyle have been greatly changed, and people’s requirements for the service level of the service industry are becoming higher and higher. The personalized needs of customers and private customization have become the hot issues of current research. The service industry is the core enterprise of the service industry. Optimizing the service industry supply network and reasonably allocating the tasks are the focus of the research at home and abroad. Under the background of BD, this paper takes the optimization of service industry supply network as the research object and studies the task allocation optimization of service industry supply network based on the analysis of customers’ personalized demand and user behavior. This paper optimizes the supply chain network of service industry based on genetic algorithm (GA), designs genetic operator, effectively avoids the premature of the algorithm, and improves the operation efficiency of the algorithm. The experimental results show that when m = 8 and n = 40, the average running time of the improved GA is 54.1 s. The network optimization running time of the algorithm used in this paper is very fast, and the stability is also higher.
Funder
Shanghai Philosophy and Social Science Youth Project
Subject
Health Informatics,Biomedical Engineering,Surgery,Biotechnology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献