Experimental Investigations on Aircraft Blade Cooling Holes and CFD Fluid Analysis in Electrochemical Machining

Author:

Chai Mingxia1ORCID,Li Zhiyong1ORCID,Yan Hongjuan1,Sun Xiaoyu1

Affiliation:

1. School of Mechanical Engineering, Shandong University of Technology, 255049 Zibo, China

Abstract

The flow field distribution in an interelectrode gap is one of the important factors that affect the machining accuracy and surface quality in the electrochemical machining (ECM) process for aircraft blades. In the ECM process, some process parameters, e.g., machining clearance, processing voltage, and solution concentration, may result in electrolyte fluid field to be complex and unstable, which makes it very difficult to predict and control the machining accuracy of ECM. Therefore, 30 sets of experiments for cooling hole making in ECM were carried out, and furthermore, the machining accuracy and stability of cooling hole were concentrated. In addition, the flow channel of the geometrical model of the gap flow field was established and analyzed according to the electrolyte flow state simulation by CFD. The effects of the flow velocity mode on the machining accuracy and stability for cooling hole making were investigated and determined in detail.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3