Affiliation:
1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
Montmorillonite is the main mineral source for the swelling and shrinking of expansive soils. The macroscopic phenomena of soil are affected by the action of deep-level nanosized minerals. In order to illustrate the nanoscale mechanism from the molecular level, a combination of Monte Carlo and molecular dynamics was used to explore the swelling and shrinking characteristics of montmorillonite. The results showed that the basal spacing, free swelling ratio, and void ratio were positively correlated with water content but were inversely proportional to the change of CEC. The hysteresis phenomena of swelling and shrinking were the most significant at a water content of 40%. Compared with the expansive soil, the nanoscale shrinkage curve of montmorillonite also included three stages of normal shrinkage, residual shrinkage, and no shrinkage. The relative concentration of water molecules conveyed information such as the thickness and position of the hydration film and explained the difference in swelling and shrinking caused by the above variables. The changes in the number and length of hydrogen bonds revealed the order of formation and the process of destruction of hydrogen bonds during the reaction. The similarity of the trends between the basal spacing, binding energy, and the number of hydrogen bonds indicated that the swelling and shrinking of the crystal layer are a reflection of the molecular interaction, and the hydrogen bonding is particularly critical.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Reference42 articles.
1. Expansive soils-the hidden disaster;D. E. Jones;Civil Engineering,1973
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献