Exsolved Ru on BaCexOy Catalysts for Thermochemical Ammonia Synthesis

Author:

Badakhsh Arash12ORCID,Vieri Hizkia Manuel23ORCID,Sohn Hyuntae23ORCID,Yoon Sung Pil2,Choi Sun Hee23ORCID

Affiliation:

1. PNDC, University of Strathclyde, Glasgow, G68 0EF, UK

2. Center for Hydrogen and Fuel Cell Research, Clean Technology Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea

3. Department of Energy and Environmental Engineering, KIST School, University of Science & Technology (UST), Seoul 02792, Republic of Korea

Abstract

Ammonia (NH3) is a carbon-free and hydrogen-rich (17.8 wt% H2) chemical that has the potential to revolutionize the energy sector. Compared with hydrogen (H2), NH3 can be easily liquefied, stored, and transported globally. However, the conventional thermocatalytic process to synthesize NH3 accounts for 2% of global energy consumption and 1.2% of CO2 emissions annually. To make the process further efficient, new catalysts must be developed to allow for NH3 synthesis in milder conditions with high thermal stability. To this end, we have developed ruthenium (Ru) supported on perovskite (BaCexOy) via a ball-milling-assisted exsolution method that allows for a more tunable morphology. Reactivity is compared with the catalyst prepared via the conventional impregnation technique. The as-synthesized catalysts are characterized by XRD, H2-TPR, TEM, XPS, and APT. The NH3 synthesis is carried out in a packed-bed tube reactor thermochemically. Using N2 instead of Ar as the carrier gas during exsolution can favour reactivity by increasing active sites and perhaps improving metal-support interaction. The impregnated sample shows higher reactivity than the exsolved catalyst; however, the long-term durability is slightly better using the exsolved catalyst. Finally, APT results interestingly show that the exsolved catalyst is more resistant to hydride formation and hydrogen poisoning, which is one of the main deactivation mechanisms for such metallic catalysts.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3