Appliance Recognition in an OSGi-Based Home Energy Management Gateway

Author:

Paganelli Federica1,Paradiso Francesca2,Turchi Stefano2,Luchetta Antonio2,Castrogiovanni Pino3,Giuli Dino2

Affiliation:

1. CNIT, University of Florence, Via Santa Marta 3, 50139 Florence, Italy

2. Department of Information Engineering, University of Florence, Via Santa Marta 3, 50139 Florence, Italy

3. Innovation & Industry Relations Research & Prototyping Telecom Italia, Via Guglielmo Reiss Romoli 274, 10148 Turin, Italy

Abstract

The rational use and management of energy is considered a key societal and technological challenge. Home energy management systems (HEMS) have been introduced especially in private home domains to support users in managing and controlling energy consuming devices. Recent studies have shown that informing users about their habits with appliances as well as their usage pattern can help to achieve energy reduction in private households. This requires instruments able to monitor energy consumption at fine grain level and provide this information to consumers. While the most existing approaches for load disaggregation and classification require high-frequency monitoring data, in this paper we propose an approach that exploits low-frequency monitoring data gathered by meters (i.e., Smart Plugs) displaced in the home. Moreover, while the most existing works dealing with appliance classification delegate the classification task to a remote central server, we propose a distributed approach where data processing and appliance recognition are performed locally in the Home Gateway. Our approach is based on a distributed load monitoring system made of Smart Plugs attached to devices and connected to a Home Gateway via the ZigBee protocol. The Home Gateway is based on the OSGi platform, collects data from home devices, and hosts both data processing and user interaction logic.

Funder

European Commission

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3