Cache Locality-Centric Parallel String Matching on Many-Core Accelerator Chips

Author:

Tran Nhat-Phuong1,Lee Myungho1,Choi Dong Hoon2

Affiliation:

1. Department of Computer Science and Engineering, Myongji University, 116 Myongji Ro, Cheo-In Gu, Yong In, Kyungki Do 449-728, Republic of Korea

2. Korea Institute of Science and Technology Information (KISTI), 245 Dae Hak Ro, Yu Seong Gu, Daejeon 305-806, Republic of Korea

Abstract

Aho-Corasick (AC) algorithm is a multiple patterns string matching algorithm commonly used in computer and network security and bioinformatics, among many others. In order to meet the highly demanding computational requirements imposed on these applications, achieving high performance for the AC algorithm is crucial. In this paper, we present a high performance parallelization of the AC on the many-core accelerator chips such as the Graphic Processing Unit (GPU) from Nvidia and the Intel Xeon Phi. Our parallelization approach significantly improves the cache locality of the AC by partitioning a given set of string patterns into multiple smaller sets of patterns in a space-efficient way. Using the multiple pattern sets, intensive pattern matching operations are concurrently conducted with respect to the whole input text data. Compared with the previous approaches where the input data is partitioned amongst multiple threads instead of partitioning the pattern set, our approach significantly improves the performance. Experimental results show that our approach leads up to 2.73 times speedup on the Nvidia K20 GPU and 2.00 times speedup on the Intel Xeon Phi compared with the previous approach. Our parallel implementation delivers up to 693 Gbps throughput performance on the K20.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3