Affiliation:
1. School of Mathematics and Quantitative Economics, Dongbei University of Finance and Economics, Dalian 116025, China
Abstract
The presence of outliers can result in seriously biased parameter estimates. In order to detect outliers in panel data models, this paper presents a modeling method to assess the intervention effects based on the variance of remainder disturbance using an arbitrary strictly positive twice continuously differentiable function. This paper also provides a Lagrange Multiplier (LM) approach to detect and identify a general type of outlier. Furthermore, fixed effects models and random effects models are discussed to identify outliers and the corresponding LM test statistics are given. The LM test statistics for an individual-based model to detect outliers are given as a particular case. Finally, this paper performs an application using panel data and explains the advantages of the proposed method.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献