Using Genetic Algorithms for Hardware Core Placement and Mapping in NoC-Based Reconfigurable Systems

Author:

Gomes Filho Jonas1,Strum Marius1,Chau Wang Jiang1

Affiliation:

1. Department of Electronics Systems, School of Engineering, University of Sao Paulo, Avenida Prof. Luciano Gualberto, Trav. 3, 05508-900 Sao Paulo, SP, Brazil

Abstract

Mapping of cores has been an important activity in NoC-based system design aimed to find the best topological location onto the NoC, such that the metrics of interest can be greatly optimized. In the last years, partial reconfigurable systems (PRSs) have included Networks-on-Chips (NoCs) as their communication structure, adding complexity to the problem of mapping. Several works have proposed specific and robust NoC architectures for PRSs, forming indirect and irregular networks, in which cases the mapping and placement problems must be treated altogether. The placement deals with the physical positioning of those cores inside the reconfigurable device. Up to now, to the best of our knowledge, the mapping-placement problem for those kinds of architectures has not been addressed yet. In this work, the problem formalization for the design-time hardware core placement and mapping in PRS-NoCs is proposed and methodologies for solving it with genetic algorithms (GAs) are presented. Several GA crossovers and methodologies are compared for obtaining the best solution. Results have shown that best GA solution obtained, in average, communication costs with 4% of penalty when compared with global minimum cost, obtained in a semiexhaustive approach. In addition, the algorithm presents low execution times.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Hindawi Limited

Subject

Hardware and Architecture

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using evolutionary metaheuristics to solve the mapping and routing problem in networks on chip;Design Automation for Embedded Systems;2023-03-10

2. A Routing based Genetic Algorithm for Task Mapping on MPSoC;2020 X Brazilian Symposium on Computing Systems Engineering (SBESC);2020-11-24

3. Exploring Tabu search based algorithms for mapping and placement in NoC-based reconfigurable systems;Proceedings of the 32nd Symposium on Integrated Circuits and Systems Design - SBCCI '19;2019

4. Analog-Digital Approach in Human Brain Modeling;2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID);2017-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3