Using Weighted Sparse Representation Model Combined with Discrete Cosine Transformation to Predict Protein-Protein Interactions from Protein Sequence

Author:

Huang Yu-An1,You Zhu-Hong2,Gao Xin3,Wong Leon1,Wang Lirong4

Affiliation:

1. College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China

2. School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

3. Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Suzhou, Jiangsu 215163, China

4. School of Electronic and Information Engineering, Soochow University, Suzhou, Jiangsu 215123, China

Abstract

Increasing demand for the knowledge about protein-protein interactions (PPIs) is promoting the development of methods for predicting protein interaction network. Although high-throughput technologies have generated considerable PPIs data for various organisms, it has inevitable drawbacks such as high cost, time consumption, and inherently high false positive rate. For this reason, computational methods are drawing more and more attention for predicting PPIs. In this study, we report a computational method for predicting PPIs using the information of protein sequences. The main improvements come from adopting a novel protein sequence representation by using discrete cosine transform (DCT) on substitution matrix representation (SMR) and from using weighted sparse representation based classifier (WSRC). When performing on the PPIs dataset ofYeast,Human, andH. pylori, we got excellent results with average accuracies as high as 96.28%, 96.30%, and 86.74%, respectively, significantly better than previous methods. Promising results obtained have proven that the proposed method is feasible, robust, and powerful. To further evaluate the proposed method, we compared it with the state-of-the-art support vector machine (SVM) classifier. Extensive experiments were also performed in which we usedYeastPPIs samples as training set to predict PPIs of other five species datasets.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3