Enhancement by Hydrogen Peroxide of Calcium Signals in Endothelial Cells Induced by 5-HT1B and 5-HT2B Receptor Agonists

Author:

Avdonin Pavel V.1ORCID,Nadeev Alexander D.2,Mironova Galina Yu.1ORCID,Zharkikh Irina L.3,Avdonin Piotr P.1,Goncharov Nikolay V.2ORCID

Affiliation:

1. Koltsov Institute of Developmental Biology RAS, Moscow, Russia

2. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia

3. Institute of General Pathology and Pathophysiology RAMS, Moscow, Russia

Abstract

Hydrogen peroxide, formed in the endothelium, acts as a factor contributing to the relaxation of blood vessels. The reason for this vasodilatory effect could be modulation by H2O2 of calcium metabolism, since mobilization of calcium ions in endothelial cells is a trigger of endothelium-dependent relaxation. The aim of this work was to investigate the influence of H2O2 on the effects of Ca2+-mobilizing agonists in human umbilical vein endothelial cells (HUVEC). We have found that H2O2 in concentration range 10-100 μM increases the rise of [Ca2+]i induced by 5-hydroxytryptamine (5-HT) and carbachol and does not affect the calcium signals of ATP, agonist of type 1 protease-activated receptor SFLLRN, histamine and bradykinin. Using specific agonists of 5-HT1B and 5-HT2B receptors CGS12066B and BW723C86, we have demonstrated that H2O2 potentiates the effects mediated by these types of 5-HT receptors. Potentiation of the effect of BW723C86 can be produced by the induction of endogenous oxidative stress in HUVEC. We have shown that the activation of 5-HT2B receptor by BW723C86 causes production of reactive oxygen species (ROS). Inhibitor of NADPH oxidases VAS2870 suppressed formation of ROS and partially inhibited [Ca2+]i rise induced by BW723C86. Thus, it can be assumed that vasorelaxation induced by endogenous H2O2 in endothelial cells partially occurs due to the potentiation of the agonist-induced calcium signaling.

Funder

Russian Science Foundation

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3