Herpes Simplex Virus Infection Increases Beta-Amyloid Production and Induces the Development of Alzheimer’s Disease

Author:

Ge Tianfang1ORCID,Yuan Yufei2ORCID

Affiliation:

1. Canadian International School, Singapore, 649414, Singapore

2. Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan

Abstract

Background. Alzheimer’s disease, a neurodegenerative memory disease, primarily results from the formation of amyloid plaques (Aβ) that gradually inhibit neuron communications. The entire mechanism of Aβ production remains unclear to date, and it is of particular interest among scientists to find out the exact mechanism that leads to amyloid precursor protein (APP) cleavage through the amyloidogenic pathway so that effective treatments can be developed. Method. 2 sets of experiments with the use of human H4-N cell lines are proposed to fully investigate the validity of the hypothesis. All of the experiments would involve immunoblotting of Aβ using an anti-Aβ antibody, and the results would be analyzed with the assistance of an image analyzer. A significant amount of Aβ would be expected to be present in the cytoplasm of cells with herpes simplex virus (HSV-1) applied, as APP endocytosis would be induced by HSV-1, which leads to higher Aβ levels inside the cell. Results. In this paper, a new hypothesis is presented on how HSV-1 infection initiates APP endocytosis and causes an increase in APP cleavage and Aβ production inside the cells. It is also hypothesized that increased Aβ peptides exit the cell via exocytosis, therefore, leading to the development of Alzheimer’s disease. The findings will support the hypothesis if intracellular Aβ concentration is significantly higher after the introduction of dHSV-1 and subsequently if extracellular Aβ concentration becomes higher without TeNT exocytosis inhibition. Conclusion. The results of this study would provide valuable insights into the mechanisms underlying Alzheimer’s disease and open new scopes of research for its potential treatments. Further studies on virus infection and the development of memory diseases should be conducted to investigate possible correlations.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3