Effectiveness of Using Gum Arabic for Co-Microencapsulation of Ruellia tuberosa L. and Tithonia diversifolia Extracts as Encapsulating Agent and Release Studies

Author:

Almayda Nabila1,Masruri Masruri1ORCID,Safitri Anna12ORCID

Affiliation:

1. Department of Chemistry, Faculty of Mathematic and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia

2. Research Center for Smart Molecules of Natural Genetic Resources (SMONAGENES), Brawijaya University, Jl. Veteran, Malang 65145, Indonesia

Abstract

This study used a combination of leaves extracts from Ruellia tuberosa L. and Tithonia diversifolia plants encapsulated using gum Arabic. The selection of leaves in medicinal plants because they are rich in bioactive compounds that provide health benefits. The encapsulation technique was microencapsulation through freeze-drying, since the nanoencapsulation for the plant extracts is unlikely to be conducted due to their large particle sizes. The resulting microcapsules were then tested their biological activities in vitro. Several conditions affect microcapsules’ production, including pH, gum Arabic concentration, and stirring time were assessed. The optimum conditions were chosen based on the highest encapsulation efficiency. The results showed that the optimum microcapsules preparation was achived at pH 5, gum Arabic concentration of 4% (w/v), and stirring time of 60 min with an encapsulation efficiency of 84.29%. The in vitro assays include inhibition of alpha-amylase and antioxidant activities, resulted in the respective IC50 values of 54.74 μg/mL and 152.74 μg/mL. Releases of bioactive compounds from the microcapsules were investigated under pH 2.2 and pH 7.4 from 30 to 120 min. Results indicated a release of 43.10% at pH 2.2 and 42.26% at pH 7.4 during 120 min, demonstrating the controlled release behavior of the encapsulated bioactive compounds; nonetheless, their release behavior was not pH-dependent. This study confirms that microencapsulation has an important role in the development of plant extracts with maintained biological functions as well as maintaining their stability.

Funder

Universitas Brawijaya

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3