Casing Damage Prediction Model Based on the Data-Driven Method

Author:

Tan Chaodong1,Yan Wei1ORCID,Tang Qing2,Wu Hua1,Bu Hongguang2,Kambi Said Juma1,Liu Jiankang1

Affiliation:

1. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing, China

2. PetroChina Dagang Oilfield Production Technology Research Institute, Tianjin, China

Abstract

Casing damage caused by sand production in unconsolidated sandstone reservoirs often results in oil wells unable to produce normally. However, due to the complex mechanism of sheath damage caused by sand production, there is no more mature technology for predicting the risk of casing damage in advance. Data-driven method can better integrate various factors and use a large amount of historical data to solve complex classification prediction problems. In this paper, XGBoost and LightGBM algorithms are used to establish casing damage prediction models, and 13 model application experiments are carried out to optimize the set of casing damage factors. These two algorithms are used to calculate the feature importance of each factor and determine the final set of factors. The evaluation results of five key metrics show that both prediction models show good performance, and the prediction accuracy is 0.99 for the XGBoost model and 0.94 for the LightGBM model. Applying the established prediction model can determine reasonable range of the maximum daily liquid production of a single layer (Qlmax) to reduce the probability of casing damage. In addition, at certain Qlmax, increasing the perforation density can significantly reduce the probability of casing damage. Therefore, increasing the perforation density can achieve high production without causing casing damage.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3