Affiliation:
1. School of Aerospace Science and Technology, Xidian University, Xi’an 710071, China
Abstract
Video superresolution (VSR) aims to reconstruct a high-resolution video sequence from a low-resolution sequence. We propose a novel particle swarm optimization algorithm named as parameter-optimized multiple swarms PSO (POMS-PSO). We assessed the optimization performance of POMS-PSO by four standard benchmark functions. To reconstruct high-resolution video, we build an imaging degradation model. In view of optimization, VSR is converted to an optimization computation problem. And we take POMS-PSO as an optimization method to solve the VSR problem, which overcomes the poor effect, low accuracy, and large calculation cost in other VSR algorithms. The proposed VSR method does not require exact movement estimation and does not need the computation of movement vectors. In terms of peak signal-to-noise ratio (PSNR), sharpness, and entropy, the proposed VSR method based POMS-PSO showed better objective performance. Besides objective standard, experimental results also proved the proposed method could reconstruct high-resolution video sequence with better subjective quality.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献