Reducing Energy Waste through Eco-Aware Everyday Things

Author:

López-de-Armentia Juan1,Casado-Mansilla Diego1,López-Pérez Sergio2,López-de-Ipiña Diego1

Affiliation:

1. Deusto Institute of Technology—Deusto Tech, University of Deusto, Bilbao, Spain

2. University of Deusto, Bilbao, Spain

Abstract

Society wastes much more energy than it should. This produces tons of unnecessary CO2emissions. This is partly due to the inadequate use of electrical devices given the intangible and invisible nature of energy. This misuse of devices and energy unawareness is particularly relevant in public spaces (offices, schools, hospitals and so on), where people use electrical appliances, but they do not directly pay the invoice to energy providers. Embedding intelligence within public, shared appliances, transforming them into Eco-aware things, is valuable to reduce a proportion of the unnecessarily consumed energy. To this end, we present a twofold approach for better energy efficiency in public spaces: (1) informing persuasively to concerned users about the misuse of electronic appliances; (2) Customizing the operating mode of this everyday electrical appliances as a function of their real usage pattern. To back this approach, a capsule-based coffee machine placed in a research laboratory has been augmented. This device is able to continuously collect its usage pattern to offer feedback to coffee consumers about the energy wasting and also, to intelligently adapt its operation to reduce wasted energy. To this aim, several machine learning approaches are compared and evaluated to forecast the next-day device usage.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design a virtual laboratory based on the characteristics of vocational students;INTERNATIONAL CONFERENCE OF MATHEMATICS AND MATHEMATICS EDUCATION (I-CMME) 2021;2022

2. Safe energy savings through context-aware hot water demand prediction;Engineering Applications of Artificial Intelligence;2020-04

3. A load balancing scheme with Loadbot in IoT networks;The Journal of Supercomputing;2017-07-12

4. A load balancing scheme based on deep-learning in IoT;Cluster Computing;2016-11-17

5. Making social networks a means to save energy;Journal of Network and Computer Applications;2016-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3