Bioreactance-Based Noninvasive Fluid Responsiveness and Cardiac Output Monitoring: A Pilot Study in Patients with Aneurysmal Subarachnoid Hemorrhage and Literature Review

Author:

Sivakumar Sanjeev1,Lazaridis Christos2ORCID

Affiliation:

1. Department of Neurology, Prisma Health-Upstate, University of South Carolina, Greenville, SC, USA

2. Departments of Neurology and Neurosurgery, The University of Chicago, Chicago, IL, USA

Abstract

Management of volume status, arterial blood pressure, and cardiac output are core elements in approaching the patients with aneurysmal subarachnoid hemorrhage (SAH). For the prevention and treatment of delayed cerebral ischemia (DCI), euvolemia is advocated and caution is made towards the avoidance of hypervolemia. Induced hypertension and cardiac output augmentation are the mainstays of medical management during active DCI, whereas the older triple-H paradigm has fallen out of favor due to lack of demonstrable physiological or clinical benefits and serious concern for adverse effects such as pulmonary edema and multiorgan system dysfunction. Furthermore, insight into clinical hemodynamics of patients with SAH becomes salient when one considers the frequently associated cardiac and pulmonary manifestations of the disease such as SAH-associated cardiomyopathy and neurogenic pulmonary edema. In terms of fluid and volume targets, less attention has been paid to dynamic markers of fluid responsiveness despite the well-established, in the general critical care literature, superiority of these as compared to traditionally used static markers such as central venous pressure (CVP). Based on this literature and sound pathophysiologic reasoning, reliance on static markers (such as CVP) is unjustified when one attempts to assess strategies augmenting stroke volume (SV), arterial blood pressure, and oxygen delivery. There are several options for continuous bedside cardiorespiratory monitoring and optimization of SAH patients. We, here, review a noninvasive monitoring technique based on thoracic bioreactance and focusing on continuous cardiac output and fluid responsiveness markers.

Funder

Cheetah-Medical

Publisher

Hindawi Limited

Subject

Critical Care and Intensive Care Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3