Secure and Efficient Communication in VANETs Using Level-Based Access Control

Author:

Thorncharoensri P.1ORCID,Susilo W.1ORCID,Chow Y.1

Affiliation:

1. Institute of Cybersecurity and Cryptology, School of Computing and Information Technology, University of Wollongong, Wollongong, NSW 2522, Australia

Abstract

In recent years, the development of vehicular ad-hoc networks (VANETs) has received much attention in intelligent transportation systems (ITS). Unlike traditional ad-hoc networks, VANETs are emerging with unique characteristics that share similar technology with autonomous vehicles (AVs) and automated driving systems (ASDs). Communication between vehicles and the surrounding infrastructure unit, such as a roadside unit (RSU), must be secured, concise, and authentic. Hence, an access control system for the ad-hoc environment is required. We introduced a level-based controlled signcryption (LBS) scheme, which can be easily constructed and implemented into an access control system for VANETs environment. Our encrypted message has a short and constant size, which is better when compared with other attribute-based signcryption or encryption. Confidentiality, privacy, and authenticity are also provided in our scheme to ensure secure and authentic communication. Therefore, our scheme has addressed communication cost, scalability, security, and privacy issues in VANETs. This primitive can be applied to simplify attribute-based access control, as the only attribute required is an integer representing the security level. Our objective is to improve the quality and security of VANET communication. Moreover, an optional privacy mechanism in our scheme provides flexibility in controlling node privacy in VANETs.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PKI-SMR: PKI based secure multipath routing for unmanned military vehicles (UMV) in VANETs;Wireless Networks;2023-09-26

2. An Empowered Intuitionistic Fuzzification Trust Oriented Approach to Handle Broadcast Storm Problem for Emergency Message Transfer in VANET;2023 3rd International Conference on Pervasive Computing and Social Networking (ICPCSN);2023-06

3. Systematic Review on the Recent Trends of Cybersecurity in Automobile Industry;2023 International Conference on Science, Engineering and Business for Sustainable Development Goals (SEB-SDG);2023-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3