Affiliation:
1. Xi’an Research Institute of High Technology, Baqiao District, Tongxin Road, Xi’an City, Shaanxi 710025, China
Abstract
Nonlinear friction could affect the high-precision motion system, resulting in poor tracking accuracy in the end. This is due to the fact that the Lugre friction model’s parameter identification process comprises both static and dynamic parameter identification. The convolutional neural network (CNN) model is used in this study to create the friction identification system. We suggest a hybrid methodology that combines the CNN method and the classic least-squares technique. The convolutional layer (CONV), which is defined by a convolutional kernel, analyzes and extracts features from an input image. In terms of accuracy and convergence, the results reveal that the upgraded CNN friction model outperforms the original CNN friction model. You may successfully reduce the influence of friction on your system while improving its performance by applying the feedforward correction.
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献