The Use of Deep Learning Model for Effect Analysis of Conventional Friction Power Confinement

Author:

Liu Chuntong1,Wang Xin1,He Zhenxin1ORCID

Affiliation:

1. Xi’an Research Institute of High Technology, Baqiao District, Tongxin Road, Xi’an City, Shaanxi 710025, China

Abstract

Nonlinear friction could affect the high-precision motion system, resulting in poor tracking accuracy in the end. This is due to the fact that the Lugre friction model’s parameter identification process comprises both static and dynamic parameter identification. The convolutional neural network (CNN) model is used in this study to create the friction identification system. We suggest a hybrid methodology that combines the CNN method and the classic least-squares technique. The convolutional layer (CONV), which is defined by a convolutional kernel, analyzes and extracts features from an input image. In terms of accuracy and convergence, the results reveal that the upgraded CNN friction model outperforms the original CNN friction model. You may successfully reduce the influence of friction on your system while improving its performance by applying the feedforward correction.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3