Examining Dent Formation Caused by Hailstone Impact

Author:

Uz Mehmet E.12ORCID

Affiliation:

1. Lecturer, Department of Civil Engineering, Faculty of Engineering, Adnan Menderes University, Aydin 09100, Turkey

2. Honorary Research Fellow, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2500, Australia

Abstract

Hailstorms pose significant risk for exposed building cladding materials. Steel sheeting is the most important cladding material used. The understanding of steel sheets behavior under hail impact loading is not sufficient for the manufacturing of hail-resistant sheets. With the purpose-built equipment, artificial hailstones of different sizes were launched to impact at steel sheets of different thicknesses and yield stresses as targets. A theoretical approach for the problem of predicting the dent size due to hailstone impact was developed and compared to the test results. The expressions developed in the theory can predict the dent depth before the impact, assuming the ratio between the dent depth and dent diameter is constant. The expression is not able to predict the depth of dents smaller than 0.75 mm and cannot predict whether the denting will occur or not. All hailstone sizes lead to visible dent on steel sheet of thicknesses 0.35 mm, 0.42 mm, and 0.55 mm. Visible denting was also obtained for the 0.75 mm steel samples with 45 mm and 55 mm hailstones; however, no denting occurred using 40 mm hailstones. It was found that the dent depth was inversely proportional with thickness and yield stress, while the dent diameter was found to be proportional to yield stress. As the yield stress of the steel sheet increased, the dent depth decreased for G300 and G550 steel. The dent diameter however increased as the yield stress increased. When the artificial hailstone shatters on impact, significant energy is lost and less energy is available to cause plastic deformation of the impacted material.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3