Breast Cancer Characterization Based on Image Classification of Tissue Sections Visualized under Low Magnification

Author:

Loukas C.1,Kostopoulos S.2,Tanoglidi A.3,Glotsos D.2,Sfikas C.3,Cavouras D.2

Affiliation:

1. Department of Medical Physics, Medical School, University of Athens, 75 Mikras Asias Street, 115 27 Athens, Greece

2. Medical Image and Signal Processing Laboratory, Department of Medical Instruments Technology, Technological Educational Institute of Athens, 12210 Athens, Greece

3. Department of Histopathology, Elena Venizelos Hospital, 106 72 Athens, Greece

Abstract

Rapid assessment of tissue biopsies is a critical issue in modern histopathology. For breast cancer diagnosis, the shape of the nuclei and the architectural pattern of the tissue are evaluated under high and low magnifications, respectively. In this study, we focus on the development of a pattern classification system for the assessment of breast cancer images captured under low magnification (×10). Sixty-five regions of interest were selected from 60 images of breast cancer tissue sections. Texture analysis provided 30 textural features per image. Three different pattern recognition algorithms were employed (kNN, SVM, and PNN) for classifying the images into three malignancy grades: I–III. The classifiers were validated with leave-one-out (training) and cross-validation (testing) modes. The average discrimination efficiency of the kNN, SVM, and PNN classifiers in the training mode was close to 97%, 95%, and 97%, respectively, whereas in the test mode, the average classification accuracy achieved was 86%, 85%, and 90%, respectively. Assessment of breast cancer tissue sections could be applied in complex large-scale images using textural features and pattern classifiers. The proposed technique provides several benefits, such as speed of analysis and automation, and could potentially replace the laborious task of visual examination.

Funder

European Social Fund

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3