Large-Scale Plantlet Conversion and Ex Vitro Transplantation Efficiency of Siberian Ginseng by Bioreactor Culture

Author:

Yang Jingli1,Zhao Shicheng2,Yu Changyeon3,Li Chenghao1

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China

2. Department of Crop Science, College of Agriculture & Life Sciences, Chungnam National University, Daejeon 305-764, Republic of Korea

3. Division of Bioresource Technology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea

Abstract

To achieve large-scale low-cost ex vitro acclimatization of Siberian ginseng plants, heart- and torpedo-shaped secondary somatic embryos (SEs) induced from germinated SEs on agar medium were collected and then inoculated to 10-l bubble column bioreactor, respectively. For plantlet conversion, inoculation of torpedo-shaped secondary SEs was more effective than heart-shaped SEs. TS2 (culture of torpedo-shaped SEs in a bioreactor with a 2-week subculture interval) plantlets had a higher root number and leaf number and larger leaf area than did HS3 (culture of heart-shaped SEs in a bioreactor with a 3-week subculture interval) and HS2 (culture of heart-shaped SEs in a bioreactor with a 2-week subculture interval) plantlets. Of these converted plants, TS2 plantlets had higher survival rate (83.7%) and growth characteristics after transplantation in a simple shed covered with a 50% sunshade net only for 6 months. TS2 plantlets also showed significantly lower H2O2content and significantly increased superoxide dismutase (SOD), glutathione peroxidase (GPX), and glutathione transferase (GST) expression levels as compared to HS2 plants when exposure to ex vitro conditions.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3