Biochemical and Biophysical Characterization of the Enolase from Helicobacter pylori

Author:

López-López María de J.1ORCID,Rodríguez-Luna Isabel C.1,Lara-Ramírez Edgar E.2ORCID,López-Hidalgo Marisol3,Benítez-Cardoza Claudia G.3ORCID,Guo Xianwu1ORCID

Affiliation:

1. Centro de Biotecnología Genómica-Instituto Politécnico Nacional, Centro de Biotecnología Genómica. Boulevard del Maestro S/N Esquina Elías Piña, Colonia Narciso Mendoza, 88710, Cd. Reynosa Tamaulipas, Mexico

2. Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social (IMSS), 98000, Zacatecas, Mexico

3. Laboratorio de Investigación Bioquímica, ENMyH-Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239, La Escalera Ticoman, 07320, Ciudad de México, Mexico

Abstract

Enolase, which catalyses the conversion of 2-phospho-D-glycerate to phosphoenolpyruvate, is an important enzyme in the classic glycolysis pathway in cells. Enolase is highly conserved in organisms from bacteria to humans, indicating its importance in cells. Thus, enolase is a good target for developing new drugs. In the last decade, new functions of this enzyme have been found. Helicobacter pylori is a common human pathogen that causes gastric diseases and even gastric cancer. In this study, the sequence of H. pylori enolase (HpEno) was analysed; the conservation (at least partial) of binding sites for cofactor, plasminogen, and host extracellular RNA, as well as catalytic site, indicates that HpEno should be capable of performing the functions. Recombinant HpEno was overexpressed and purified from E. coli. Compared to the enolases from other species, HpEno had similar characteristics for its secondary structure. The temperature-induced profiles indicate that HpEno is quite stable to temperature, compared to other homologs. Regarding the kinetics of the unfolding reaction, we found that the activation enthalpy associated with the thermal unfolding reaction is equivalent to the reported activation enthalpy for yeast enolase, indicating a similar scaffold and kinetic stability. Although a wide range of experimental conditions were assayed, it was not possible to detect any enzymatic activity of HpEno. To prove the lack of activity, still a much wider range of experiments should be carried out.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3