Affiliation:
1. Korea Institute of Construction Technology, Goyang, Gyeonggi 411-712, Republic of Korea
Abstract
This paper investigates experimentally the feasibility of estimating the stress in the prestressing tendons of prestressed concrete bridges using the magnetic field induced by an electromagnet and the Villari effect in which the magnetic susceptibility or permeability of a ferromagnetic material changes when subjected to a mechanical stress. The test results show the good linearity between the stress in the prestressing tendon and the induced magnetic flux density within the practical stress range of the tendons. In addition, the induced magnetic flux density in the tendon appears to depend on the intensity of the electromagnet and the distance between the electromagnet and the tendon regardless of the concrete cover. Accordingly, although further studies are needed for practical applications, the stress in the prestressing tendon of a prestressed concrete bridge can be estimated by measuring the induced magnetic flux density generated in the tendon and by using the linear relationship between this induced magnetic flux density and the stress in the prestressing tendon.
Funder
Korea Institute of Construction Technology
Subject
Computer Networks and Communications,General Engineering
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献