Meta-Algorithms for Scheduling a Chain of Coarse-Grained Tasks on an Array of Reconfigurable FPGAs

Author:

Mehta Dinesh P.1,Shetters Carl2,Bouldin Donald W.3

Affiliation:

1. Department of Electrical Engineering and Computer Science, Colorado School of Mines, Golden, CO 80401, USA

2. Aerospace Testing Alliance (ATA), Arnold Air Force Base, TN 37389, USA

3. Department of Electrical and Computer Science, University of Tennessee, Knoxville, TN 37996, USA

Abstract

This paper considers the problem of scheduling a chain of n coarse-grained tasks on a linear array of k reconfigurable FPGAs with the objective of primarily minimizing reconfiguration time. A high-level meta-algorithm along with two detailed meta-algorithms (GPRM and SPRM) that support a wide range of problem formulations and cost functions is presented. GPRM, the more general of the two schemes, reduces the problem to computing a shortest path in a DAG; SPRM, the less general scheme, employs dynamic programming. Both meta algorithms are linear in n and compute optimal solutions. GPRM can be exponential in k but is nevertheless practical because k is typically a small constant. The deterministic quality of this meta algorithm and the guarantee of optimal solutions for all of the formulations discussed make this approach a powerful alternative to other metatechniques such as simulated annealing and genetic algorithms.

Funder

National Science Foundation

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combining Checkpointing and Replication for Reliable Execution of Linear Workflows with Fail-Stop and Silent Errors;International Journal of Networking and Computing;2019

2. Combining Checkpointing and Replication for Reliable Execution of Linear Workflows;2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW);2018-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3