Biomedical Data Annotation: An OCT Imaging Case Study

Author:

Anderson Matthew1ORCID,Sadiq Salman2ORCID,Nahaboo Solim Muzammil2,Barker Hannah2,Steel David H.23,Habib Maged23,Obara Boguslaw13ORCID

Affiliation:

1. School of Computing, Newcastle University, Urban Sciences Building, Newcastle upon Tyne NE4 5TG, UK

2. Sunderland Eye Infirmary, Queen Alexandra Rd, Sunderland NE4 5TG, UK

3. Bioscience Institute, Newcastle University, Catherine Cookson Building, Newcastle upon Tyne NE2 4HH, UK

Abstract

In ophthalmology, optical coherence tomography (OCT) is a widely used imaging modality, allowing visualisation of the structures of the eye with objective and quantitative cross-sectional three-dimensional (3D) volumetric scans. Due to the quantity of data generated from OCT scans and the time taken for an ophthalmologist to inspect for various disease pathology features, automated image analysis in the form of deep neural networks has seen success for the classification and segmentation of OCT layers and quantification of features. However, existing high-performance deep learning approaches rely on huge training datasets with high-quality annotations, which are challenging to obtain in many clinical applications. The collection of annotations from less experienced clinicians has the potential to alleviate time constraints from more senior clinicians, allowing faster data collection of medical image annotations; however, with less experience, there is the possibility of reduced annotation quality. In this study, we evaluate the quality of diabetic macular edema (DME) intraretinal fluid (IRF) biomarker image annotations on OCT B-scans from five clinicians with a range of experience. We also assess the effectiveness of annotating across multiple sessions following a training session led by an expert clinician. Our investigation shows a notable variance in annotation performance, with a correlation that depends on the clinician’s experience with OCT image interpretation of DME, and that having multiple annotation sessions has a limited effect on the annotation quality.

Funder

Bayer

Publisher

Hindawi Limited

Subject

Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3