Intelligent Intrusion Detection Based on Federated Learning for Edge-Assisted Internet of Things

Author:

Man Dapeng1ORCID,Zeng Fanyi1,Yang Wu12,Yu Miao3ORCID,Lv Jiguang1,Wang Yijing4

Affiliation:

1. Information Security Research Center, Harbin Engineering University, Harbin 150001, China

2. Peng Cheng Laboratory, Guangdong 518055, China

3. Beijing Institute of Network Data, Beijing 100031, China

4. Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100864, China

Abstract

As an innovative strategy, edge computing has been considered a viable option to address the limitations of cloud computing in supporting the Internet-of-Things applications. However, due to the instability of the network and the increase of the attack surfaces, the security in edge-assisted IoT needs to be better guaranteed. In this paper, we propose an intelligent intrusion detection mechanism, FedACNN, which completes the intrusion detection task by assisting the deep learning model CNN through the federated learning mechanism. In order to alleviate the communication delay limit of federal learning, we innovatively integrate the attention mechanism, and the FedACNN can achieve ideal accuracy with a 50% reduction of communication rounds.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3