Publishing and Interlinking COVID-19 Data Using Linked Open Data Principles: Toward Effective Healthcare Planning and Decision-Making

Author:

Ali Shaukat1ORCID,Zada Islam1ORCID,Mehmood Zahid2ORCID,Ullah Amin3ORCID,Ali Haider4ORCID,Ullah Mujeeb5ORCID

Affiliation:

1. Department of Computer Science, University of Peshawar, Peshawar 25120, Pakistan

2. Department of Computer Engineering, University of Engineering and Technology, Taxila 47050, Pakistan

3. Department of Computer Science, Swedish College of Engineering and Technology, Wah Cantt, Rawalpindi 47000, Pakistan

4. Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan

5. Department of Zoology, Islamia College, Peshawar 25120, Pakistan

Abstract

The COVID-19 data is critical to support countries and healthcare organizations for effective planning and evidence-based practices to counter the pressures of cost reduction, improved coordination, and outcome and produce more with less. Several COVID-19 datasets are published on the web to support stakeholders in gaining valuable insights for better planning and decision-making in healthcare. However, the datasets are produced in heterogeneous proprietary formats, which create data silos and make data discovery and reuse difficult. Further, the data integration for analysis is difficult and is usually performed by the domain experts manually, which is time-consuming and error-prone. Therefore, an explicit, flexible, and widely acceptable methodology to represent, store, query, and visualize COVID-19 data is needed. In this paper, we have presented the design and development of the Linked Open COVID-19 Data system for structuring and transforming COVID-19 data into semantic format using explicitly developed ontology and publishing on the web using Linked Open Data (LOD) principles. The key motivation of this research is the evaluation of LOD technology as a potential option and application of the available Semantic Web tools (i.e., Protégé, Excel2RDF, Fuseki, Silk, and Sgvizler) for building LOD-based COVID-19 information systems. We have also underpinned several use-case scenarios exploiting the LOD format of the COVID-19 data, which could be used by applications and services for providing relevant information to the end-users. The effectiveness of the proposed methodology and system is evaluated using the system usability scale and descriptive statistical methods and results are found promising.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3