Research on the Gas Emission Quantity Prediction Model of Improved Artificial Bee Colony Algorithm and Weighted Least Squares Support Vector Machine (IABC-WLSSVM)

Author:

Wang Lei1ORCID,Li Jinghang1ORCID,Zhang Wenbo1ORCID,Li Yu1ORCID

Affiliation:

1. School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, 454003 Henan, China

Abstract

In order to further accurately predict gas emission of working face, this paper proposes a prediction model of gas emission of working face based on the combination of improved artificial bee colony algorithm and weighted least squares support vector machine (IABC-WLSSAVM). The research steps are as follows: Firstly, in order to obtain the sparse solution of LSSVM, a more reliable prediction model is realized by weighting the error value. Secondly, the chaotic sequence is introduced into the artificial bee colony algorithm to find a better initial honey source, which increases the diversity of the population, and combines the Levy flight to update the search step to avoid falling into the trap of local optimum. At the same time, the improved artificial bee colony algorithm is used to optimize the kernel width σ and regularization parameter λ of WLSSVM, which improves the prediction accuracy and convergence rate of WLSSVM. Finally, the quantitative analysis model of WLSSVM is reconstructed by using the optimized parameters, and the nine parameters of buried depth of coal seam, gas content of coal seam, coal thickness, interlayer lithology, production rate of working face, length of working face, inclination of coal seam, gas content of adjacent layer, and thickness of adjacent layer are used as the main influencing factors. After normalization, the nonlinear prediction model of gas emission is established. The simulation results based on the three indicators of determination coefficient, root mean square error, and average relative variance show that the IABC-WLSSVM prediction model proposed in this paper can not only overcome the local optimization to obtain the global optimal solution but also has faster convergence speed and higher prediction accuracy. This prediction model has obvious advantages compared with the other three improved prediction models in terms of fitting, accuracy, and generalization ability, which can provide a reliable theoretical basis for the prediction of gas emission in coal mining face under complex factors and propose a new idea for the application of artificial intelligence in the construction of intelligent mines. At the same time, the prediction model can also be applied to other fields.

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

Reference25 articles.

1. Applications of artificial intelligence for coal mine gas risk assessment

2. Research on time series characteristics of gas concentration at working face and application of them to early warning;Y. G. Yang;China Safety Science Journal,2018

3. Research on fuzzy fractal neural network for prediction of mine gas emission;Y. Zeng;Coal Science & Technology Magazine,2004

4. Gas monitoring warning signal identification based on time series similarity measure;S. S. Zhu;Journal of China University of Mining & Technology,2012

5. Applications of machine learning methods for engineering risk assessment - A review;H. Jeevith;Safety Science,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3