Nonuniform Code Multiple Access

Author:

Yan Cheng12ORCID,Zhang Ningbo12ORCID,Kang Guixia12ORCID

Affiliation:

1. Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Beijing, China

2. Wuxi BUPT Sensory Technology and Industry Institute Co., Ltd., Wuxi, China

Abstract

For sparse code multiple access advanced (SCMAA), the quality of initial information on each resource node and the convergence reliability of the detected user in each decision process were unsatisfactory at the message passing algorithm (MPA) receiver. Driven by these problems, this paper proposes a nonuniform code multiple access (NCMA) scheme. In the codebook design of NCMA, different transmitted layers are generated from different complex multidimension constellations, respectively, and a novel basic complex multidimension constellation design is proposed to increase the minimum intrapartition distance. Then a novel criterion of permutation set is proposed to maximize the sum of distances between interfering dimensions of transmitted codewords multiplexed on any resource node, where the number of nonzero elements of transmitted codewords is more than 1. On the other side, an advanced MPA receiver is proposed to improve the reliability of detection on each transmitted layer of NCMA. Simulation results show that the block error rate performance of NCMA outperforms SCMAA and sparse code multiple access (SCMA) under the same spectral efficiency.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3