Predicting Mortality in Hospitalized COVID-19 Patients in Zambia: An Application of Machine Learning

Author:

Mulenga Clyde12ORCID,Kaonga Patrick1ORCID,Hamoonga Raymond3ORCID,Mazaba Mazyanga Lucy4ORCID,Chabala Freeman2ORCID,Musonda Patrick1ORCID

Affiliation:

1. Department of Epidemiology and Biostatistics, University of Zambia, Lusaka, Zambia

2. Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, Lusaka, Zambia

3. The Health Press, Zambia National Public Health Institute, Lusaka, Zambia

4. Communication Information and Research, Zambia National Public Health Institute, Lusaka, Zambia

Abstract

The coronavirus disease 2019 (COVID-19) has wreaked havoc globally, resulting in millions of cases and deaths. The objective of this study was to predict mortality in hospitalized COVID-19 patients in Zambia using machine learning (ML) methods based on factors that have been shown to be predictive of mortality and thereby improve pandemic preparedness. This research employed seven powerful ML models that included decision tree (DT), random forest (RF), support vector machines (SVM), logistic regression (LR), Naïve Bayes (NB), gradient boosting (GB), and XGBoost (XGB). These classifiers were trained on 1,433 hospitalized COVID-19 patients from various health facilities in Zambia. The performances achieved by these models were checked using accuracy, recall, F1-Score, area under the receiver operating characteristic curve (ROC_AUC), area under the precision-recall curve (PRC_AUC), and other metrics. The best-performing model was the XGB which had an accuracy of 92.3%, recall of 94.2%, F1-Score of 92.4%, and ROC_AUC of 97.5%. The pairwise Mann–Whitney U-test analysis showed that the second-best model (GB) and the third-best model (RF) did not perform significantly worse than the best model (XGB) and had the following: GB had an accuracy of 91.7%, recall of 94.2%, F1-Score of 91.9%, and ROC_AUC of 97.1%. RF had an accuracy of 90.8%, recall of 93.6%, F1-Score of 91.0%, and ROC_AUC of 96.8%. Other models showed similar results for the same metrics checked. The study successfully derived and validated the selected ML models and predicted mortality effectively with reasonably high performance in the stated metrics. The feature importance analysis found that knowledge of underlying health conditions about patients’ hospital length of stay (LOS), white blood cell count, age, and other factors can help healthcare providers offer lifesaving services on time, improve pandemic preparedness, and decongest health facilities in Zambia and other countries with similar settings.

Publisher

Hindawi Limited

Subject

Public Health, Environmental and Occupational Health,Epidemiology

Reference59 articles.

1. The true death toll of COVID-19: estimating global excess mortality;WHO,2021

2. Mortality classification of hospitalized COVID-19 patients in Zambia using machine learning;C. Mulenga,2022

3. An interactive web-based dashboard to track COVID-19 in real time

4. JHU CSSE COVID-19 data;Jhu Csse,2021

5. Health systems preparedness for COVID-19 pandemic

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3